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Analytical solution for steady-state populations in the self-assembly of microtubules
from nucleating sites

Karl F. Freed
James Franck Institute, University of Chicago, Chicago, Illinois 60637

~Received 25 July 2001; published 31 December 2002!

In addition to the biological importance of microtubules, which form a portion of the cellular cytoskeleton
and a network for intracellular transport, the kinetics of microtubule self-assembly have generated great interest
because individual microtubules exist in growing and decaying phases, with randomly occurring interconver-
sions between them. Although a great deal is known concerning the microscopic details of these growth and
decay processes, no description is available for the steady-state microtubule concentrations that are observed
experimentally when microtubules are grown from nucleating sites. We generalize Hill’s two-state model to
include the dependence of the rates on tubulin concentration for systems where microtubules are grown from
nucleating sites. An analytic solution is provided here to the resulting nonlinear, doubly infinite set of kinetic
equations for the steady-state concentrations of both the growing and decaying phase microtubules as a
function of the degreen of self-assembly and of the tubulin concentration. We also discuss the conditions for
the stability of the steady state.

DOI: 10.1103/PhysRevE.66.061916 PACS number~s!: 87.10.1e, 82.35.Pq, 87.15.Rn
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I. INTRODUCTION

Microtubules, along with actin, flagellin, fibrin, and to
bacco mosaic virus, are examples of biological systems
self-assemble reversibly@1#. With the exception of bacteria
microtubules are found in all living cells where they for
part of the cell structural support~the ‘‘cytoskeleton’’! and
the ‘‘rail’’ network for intracellular transport of materials
and they participate in cell reproduction and motion. In t
presence of GTP~guanosine triphosphate! and Mg1 ions,
and perhaps aided by microtubule-associated proteins,
protein tubulin self-assembles to form microtubules that
long hollow cylinders having an outer diameter of about
nm and a length that may span the cell. Microtubules may
grown either from nucleating sites or may be self-nuclea
~at higher temperatures and/or tubulin concentrations!. As
shown by Fygenson, Braun, and Libchaber@2#, microtubule
formation from nucleating sites exhibits a steady-state li
for the microtubule length distribution at lower temperatu
or tubulin concentrations. This steady-state behavior c
trasts with the unbounded growth that occurs at hig
temperatures/concentrations and for self-nucleated micr
bules.

The dynamical growth pattern of microtubules has dra
considerable interest@3–5# since individual microtubules ex
hibit separate growth and decay phases with random tra
tions between these two phases and with a dynamical in
bility occurring when the growth becomes unbounded. H
and co-workers@6# have introduced a minimal ‘‘two-state
model of the growth/decay kinetics of the microtubule ma
distribution. The model involves a doubly infinite set of lin
ear kinetic equations for the microtubule mass distributio
of the growing and decaying microtubules, a model who
full analytical solution has recently been given by Rubin a
co-workers@7#. The rate coefficients in Hill’s model, conse
quently, are effective rate constants that depend on the
centrations of GTP, Mg1, microtubule-associated protein
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etc., and that hide some of the interesting microscopic de
of the microtubule growth and decay. As analyzed recen
by Flyvbjerg and co-workers@8#, the process of microtubule
self-nucleation is quite complex. Restricting attention to si
ations in which only microtubule growth is possible, the
model the nucleation kinetics with a set of coupled nonlin
equations that are rendered finite by considering the ave
microtubule size and lumping together all microtubules b
yond a given size.

A full description of the growth kinetics~i.e., a descrip-
tion of the microtubule length distribution as a function
time! requires, in principle, the solution of a doubly infinit
set of coupled nonlinear first-order differential equations.
noted above, the complexities posed by these equations
led most theoretical analyses to use either linearized mo
or nonlinear ones of finite dimensionality@9,10#. Here, we
extend Hill’s model to describe microtubule growth fro
nucleating sites. Both the latter extension and the inclus
of the explicit dependence of rate coefficients on the tubu
concentration render the doubly infinite set of coupled eq
tions nonlinear. Despite this increased complexity, we
solve the major unsolved theoretical problem of determin
the microtubule length distribution under steady-state con
tions as a function of tubulin concentration for microtubu
systems that are grown from nucleating sites. The analysi
the stability of the steady state can then readily be treated
considering the linear equations for small displacement fr
steady-state populations.

As recently demonstrated for the reversible self-assem
of the protein actin intoF-actin filaments@11#, experimental
measurements for the extent of polymerization under stea
state conditions provide an excellent means to determine
thermodynamic parameters, such as reaction free ener
which depend on temperature,pH, salt concentration, etc
By analogy, similar studies of steady-state microtubule s
assembly should provide deeper understanding of the mi
tubule self-assembly mechanism, especially because
©2002 The American Physical Society16-1
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steady-state behavior of actin and of microtubule s
assemblies can be interpreted using nonlinear algebraic e
tions that are far simpler to apply than the coupled nonlin
differential equations governing the kinetic behavior. Of p
ticular importance in the analysis of steady-state data
knowledge of the steady-state properties as a function of
initial concentration of tubulin monomers~before the self-
assembly commences!. The theory, predicting the variatio
of steady-state properties with initial tubulin concentratio
may then be used for determining the rate constants for
dividual steps in the microtubule self-assembly process
function of temperature, content of buffer solution, etc.

The focus of this paper lies in solving the equations g
erning the steady-state limit, so diffusion processes may
ignored because experiments@12# indicate that the attach
ment of tubulin dimers to the end of the microtubule is t
rate determining step in the growth of microtubules. Th
the doubly infinite set of coupled nonlinear algebraic eq
tions suffices for describing the steady-state microtub
mass distribution. The steady-state equations are solved
lytically.

We extend Hill’s minimal model for the kinetics of indi
vidual microtubule formation. The treatment of nucleati
sites and the explicit inclusion of the tubulin concentrati
implies that the twofold infinite set of coupled equations b
come nonlinear, providing the major mathematically comp
cated feature of modeling the microtubule dynamics. Ext
sions to produce more detailed models are briefly discus

II. MINIMAL MODEL FOR MICROTUBULE KINETICS

The minimal model describes the microtubule kinetics
terms of the concentrations@Tn

1# and @Tn
2# of n-mers ~at

time t! that are in growing and depolymerization stages,
spectively. The individual ‘‘monomers’’ areab-tubulin
dimers. The initial concentration of monomers is denoted
@T#0 , while its instantaneous concentration during the po
merization reactions~see below! is designated as@T#. The
initial concentration of nucleating sites is@N#0 , while the
concentration of free~i.e., no bound tubulin! nucleating sites
is @N#. The growing state microtubule formed by the sequ
tial attachment ofn monomers to the nucleating site is de
ignated asTn

1 , whose concentration at timet is denoted as
@Tn

1#. The other essential reactions included in the model
the ‘‘catastrophe’’ process involving the transition fro
growingTn

1 to decayingTn
2 , and the reverse ‘‘rescue’’ tran

sition from Tn
2 to Tn

1 . We assume that GTP is present
excess, so the dependence of the rates on the GTP con
tration need not be followed, nor is it necessary to dist
guish between tubulin-GTP and tubulin-GDP concentrati
~GDP is guanosine diphosphate!.

This simple kinetic scheme is represented by the dou
infinite set ofunidirectional reactions,

T1N→T1
1 , binding of monomer to nucleating site

with rate constantkn , ~1a!
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Tn
11T→Tn11

1 , polymerization or growth

with rate constantkp , ~1b!

Tn
1→Tn

2 , catastrophe, with rate constantkc , ~1c!

Tn
2→Tn

21T, depolymerization with rate constantkd ,
~1d!

Tn
2→Tn

1 , rescue with rate constantkr , ~1e!

with n51, 2, . . . ,`, andT0
2[0. The kinetics of reactions

~1a!–~1e! are described by a twofold infinite set of couple
nonlinear differential equations,

d@T#

dt
52kn@N#@T#2kp@T# (

n51

`

@Tn
1#1kd(

n51

`

@Tn
2#,

~2a!

d@T1
1#

dt
5kn@N#@T#2kp@T#@T1

1#2kc@T1
1#1kr@T1

2#,

~2b!

d@Tn
1#

dt
5kp@T#@Tn21

1 #2kp@T#@Tn
1#2kc@Tn

1#1kr@Tn
2#,

n.1, ~2c!

d@Tn
2#

dt
52kd@Tn

2#1kd@Tn11
2 #1kc@Tn

1#2kr@Tn
2#, n.0,

~2d!

where tubulin mass conservation imposes the constraint

@T#05@T#1Q11Q2 . ~3!

@T#0 and@T# are the initial and instantaneous concentratio
of tubulin monomers, respectively, and the quantitiesQ1(1)
and Q2(1) are weighted sums of the concentrations@Tn

1#
and@Tn

2# of tubulin monomers in the growing and decayin
states,

Q15 (
n51

`

n@Tn
1#, Q25 (

n51

`

n@Tn
2#. ~3a!

The ‘‘catastrophe’’ ratekc is observed to depend on the tu
bulin concentration@13#, and this dependencekc(@T#) may
be introduced into the final equation for determining@T#. No
rate equation is necessary for the instantaneous concentr
@N# of available nucleating sites because the concentratio
occupied nucleating sites,@N#02@N#, must equal the tota
concentration of microtubules chains, independent of s
and whether they are growing or decaying,

@N#2@N#05P11P2 , ~4!

where the quantitiesP1 andP2 are given by
6-2
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P15 (
n51

`

@Tn
1#, P25 (

n51

`

@Tn
2#. ~4a!

Nonlinearities appear in Eq.~3! from the explicit dependenc
on the monomer concentration@T# and from the nucleation
site ‘‘balance equation’’ in Eq.~4!.

The average microtubule sizes for the growing micro
bules, decaying microtubules, and for all microtubules
readily obtained fromP6 andQ6 , respectively, by

^n&15
Q1

P1
, ^n&25

Q2

P2
, ^n&5

Q11Q2

P11P2
. ~4b!

As noted above, the rate constantskc andkr for catastro-
phe and rescue steps, respectively, are understood to be
tions of the concentrations@GDP# and @GTP#, as well as of
temperature and the concentrations of other componen
the buffer solution~such as ions like Mg1, the solutionpH,
and microtubule-associated proteins!. Alternatively, the mini-
mal kinetic model may be extended by including the expl
concentrations@GDP# and @GTP# in Eq. ~1!, but this exten-
sion presents no essential difficulty, again because of
stoichiometry constraints on the concentrations@GDP# and
@GTP# ~Ref. @12#!. Experiments@2# show that the two ends o
the microtubule grow at different rates, and this feature co
likewise be incorporated with no difficulty into the model b
introducing a slower rate (kp

2) for growth at the ‘‘minus’’
end.

III. STEADY-STATE POPULATIONS

The steady-state limit is obtained from the kinetic equ
tions ~2! by setting the time derivatives on the left hand si
to zero, i.e., by taking

d@T#

dt
5

d@Tn
1#

dt
5

d@Tn
2#

dt
50, n51,2, . . . . ~5!

For notational simplicity, the steady-state values of the c
centrations are henceforth also denoted as@T#, @Tn

1#, and
@Tn

2# in the following. The steady-state limits of equatio
~2! are rewritten in the more compact form,

kn$@N#02P12P2%52kp@T#P11kdP2 , ~6a!

@Tn
2#5a@Tn21

2 #1b@Tn21
1 #, n.1, ~6b!

@Tn
1#5c@Tn21

1 #1d@Tn
2#, n.1, ~6c!

@T1
1#5 f 1d@T1

2#, ~6d!

where Eq. ~4! has been used and where the reduc
rate constants are defined asa5(kr1kd)/kd , b52kc /
kd , c5kp@T#/(kc1kp@T#), d5kr /(kc1kp@T#), and
f 5kn@T#$@N#02P12P2%/(kc1kp@T#), some of which are
still explicit functions of@T#.

Summing Eqs.~6b! and~6c! overn from 2→` and using
the definitions in Eq.~4! provide the respective pair of equa
tions,
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2dP21~12c!P15@T1
1#2d@T1

2#5 f , ~7b!

where application of Eq.~6d! provides the last equality in
Eq. ~7b!. The set of equations~7a!, ~7b!, and ~6a! enable
solving for P6 and @T1

2#,

P15kn@N#0~kr1kd!/D, ~8a!

P25kn@N#0~kc1kp@T# !/D, ~8b!

@T1
2#5b5kn@N#0~kckd2krkp@T# !/kdD, ~8c!

D5~kc1kn!~kd1kn!1~kn2kr !~kp@T#2kn!. ~8d!

Given the quantities in Eq.~8!, it is possible to solve for
the individual@Tn

1# and@Tn
2# by iteration, but the process i

greatly facilitated by the use of generating function metho
@14# as follows. Multiply Eqs.~6b! and ~6c! by xn and then
summing fromn from 2→` provides a pair of equations fo
the quantitiesP6(x)5(2

` xn@Tn
6#, (xÞ1), which are the

generating functions from which the solution to Eqs.~6! are
found by differentiating, as

@Tn
2#5~ac!@~n21!#/2@bUn21~l!

1~ac!21/2~b f2cb!Un22~l!#, ~9a!

@Tn
1#5~ac!@~n21!#/2@~ f 1bd!Un21~l!

1~a/c!1/2a f Un22~l!#, ~9b!

whereUn(l) are Chebyshev polynomials of the second kin

Un~l!5sin@~n11!arccosl#/~12l2!1/2, ~10!

with the definitions U21(l)[0 and l5(a1bd
1c)/2(ac)1/2. The overall exponential factor in Eq.~9! is
consistent with the exponential microtubule length distrib
tion found in Ref.@2#.

Since the steady-state concentrations@Tn
1# and @Tn

2# in
Eqs. ~9! are functions of@T#, it would appear that the mas
conservation equation~3! could be used to determine th
steady-state value for@T# by using Eq.~3! in conjunction
with equations forQ6 , formed by performing the indicated
summations in Eq.~3a! on Eqs.~6b! and ~6c!, to eliminate
Q6 and leave a nonlinear algebraic equation for@T#. How-
ever, the pair of equations forQ6 may be shown to be iden
tical, leaving one equation short of that necessary for de
mining @T#. On the other hand, since the average degree
polymerization,^n&, is measurable, we may use^n& to pro-
vide the remaining equation.

Substituting the mass conservation equation~3! and the
solutions forP6 from Eqs.~8a! and ~8b! into the definition
of ^n& yields a readily solved quadratic equation for t
steady state concentration@T# as a function of@T#0 , ^n&, and
the rate constants. Ifkc is taken to depend on@T#, then the
equation is no longer quadratic and therefore requires
merical solution. Insertion of this solution for@T# into Eq.~9!
yields the explicit steady-state mass distribution.
6-3
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IV. STABILITY CONDITIONS

The steady state is stable, provided that small displa
ments from steady state die out with time. Experiments@2#
indicate that this stability exists at a lower temperatu
concentration range, while instability ensues at hig
temperatures/concentrations. The stability limits are rea
studied by expanding the nonlinear kinetic equations~2!
about the steady-state solutions and by retaining only
linear contributions.

The steady state is stable, provided that small displa
ments from steady state die out with time or, perhaps,
oscillate~the ‘‘dynamic instability’’!. Thus, the stability lim-
its are obtained by expanding the nonlinear kinetic equati
~2! about the steady-state solutions and retaining only
linear contributions. Define the deviations from steady st
as, for example,

@dn
1#5@Tn

1# t2@Tn
1#ss, ~11!

where now@Tn
1# t denotes the time-dependent concentrat

and @Tn
1#ss designates the time-independent steady-s

limit. The linearized kinetic equations then become

d@d#

dt
52G2kp@d# (

n51

`

@Tn
1#ss2kp@T#ss(

n51

`

@dn
1#

1kd(
n51

`

@dn
2#, ~12a!

d@d1
1#

dt
5G2kp@d#@T1

1#ss2kp@T#ss@d1
1#2kc@d1

1#1kr@d1
2#,

~12b!

d@dn
1#

dt
5kp@d#@Tn21

1 #ss1kp@T#ss@dn21
1 #2kp@d#@Tn

1#ss

2kp@T#ss@dn
1#2kc@dn

1#1kr@dn
2#, n.1,

~12c!
ad

so
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2#

dt
52kd@dn

2#1kd@dn11
2 #1kc@dn

1#2kr@dn
2#, n.0,

~12d!

where

G[kn@d#$@N#02P1,ss2P,ss%

2kn@T#ssH (
n51

`

@dn
1#2 (

n51

`

@dn
2#J .

A growing exponential component to the solution of E
~12! indicates that the steady-state limit is unstable. Whil
linear set of first-order differential equations is read
solved, the doubly infinite character of the stability equatio
hampers practical computations. However, the infinite se
relaxation rates is really unnecessary. Instead, for examp
‘‘mode’’ containing predominately the growing species, su
asD15(n51

` @dn
1#, is expected to be one of the modes ind

cating the instability. It may be shown that the same fin
stability conditions ensue when the set of equations is
panded to include modes such asV15(n51

` n@dn
1# involv-

ing the deviations from steady state of the total mass of
crotubules.

Equations~12c! and ~12d! are summed overn to reduce
the stability conditions to a set of three equations. LetVT

denote the column vector,

VT~ t !5~D1 , D2 , @d#!, ~13!

and the equations may be represented in matrix form as

dV~ t !

dt
5MV ~ t !1N@d1

2#, ~14!

where the matrixM and vectorN are given by
M5S 2@kn$@N#02P1,ss2P2,ss%1kpP1# ~kn2kp!@T#ss kd1kn@T#ss

kn$@N#02P1,ss2P2,ss% 2kc2kn@T#ss kr2kn@T#ss

0 kc 2kr

D , N5S 0
0

2kd

D . ~15!
ity
if
ve,
ility
trix
tion
The solution to Eq.~14! may be written as

V~ t !5exp~M t !V~0!1E
0

t

dt8 exp@M ~ t2t8!#N@d1
2# t8,

~16!

whereV(0) represents an arbitrary displacement from ste
state. If an eigenvalue ofM is positive, the term
exp(M t)V(0) exhibits an instability of the steady state,
y

the behavior of the integral term is irrelevant to the stabil
consideration. The only other possibility for instability is
@d1

2# grows exponentially when all eigenvalues are negati
a situation that is physically unreasonable. Thus, the stab
condition reduces to the determination of whether the ma
M has a positive eigenvalue. The characteristic equa
detuM2x1u50 is cubic in x of the form, x31a2x21a1x
1a0 , where~defining @N#ss5@N#02P1,ss2P2,ss),
6-4
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a25kn@N#ss1kpP11kc1kr1kn@T#ss, ~17a!

a15~kn@N#ss1kpP1!~kc1kr1kn@T#ss!1kn@T#ss~kc1kr !,
~17b!

a05kn@N#ss~krkn@T#ss2kckd!1P1krkn@T#ss~kc1kr !.
~17c!

The following situations cover all possibilities:

~a! If all roots are real and negative, the steady state
stable.

~b! If some roots are positive, there is unbounded grow
and the steady state is unstable. Becausea2 anda1 are posi-
tive, at most one root is positive~instability!, and this can
arise only ifa0 is negative, which is highly unlikely.

~c! If two roots are complex conjugates, but the real pa
are negative, the system oscillates about the steady sta
the real parts are positive, the system enters a domai
‘‘dynamic instability,’’ oscillatory, unbounded growth.

While the conditions delineating these situations can
represented analytically, the large number of rate coefficie
and the steady-state values involved render unwieldy
analytical analysis of these conditions. Rather, a detailed
r-

.

S
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a function of the controllable system parameters, and thi
beyond the scope of the present treatment.

Although steady-state microtubule growth is not observ
experimentally to occur under conditions where the grow
is self-nucleating, the dynamical equations should posse
steady-state solution whose resolution could provide insig
into special conditions, such as those greatly increasing
catastrophe rate, where steady-state growth could be pro
and thereby yield added understanding of self-nuclea
growth. The treatment of self-nucleated steady-state gro
follows identically as above@15# with the replacement
kn@N#@T#→ka@T#m, wherem is the number of monomer
required to form the nucleus. The final equation for@T# is
therefore no longer quadratic.
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