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Analytical solution for steady-state populations in the self-assembly of microtubules
from nucleating sites
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In addition to the biological importance of microtubules, which form a portion of the cellular cytoskeleton
and a network for intracellular transport, the kinetics of microtubule self-assembly have generated great interest
because individual microtubules exist in growing and decaying phases, with randomly occurring interconver-
sions between them. Although a great deal is known concerning the microscopic details of these growth and
decay processes, no description is available for the steady-state microtubule concentrations that are observed
experimentally when microtubules are grown from nucleating sites. We generalize Hill's two-state model to
include the dependence of the rates on tubulin concentration for systems where microtubules are grown from
nucleating sites. An analytic solution is provided here to the resulting nonlinear, doubly infinite set of kinetic
equations for the steady-state concentrations of both the growing and decaying phase microtubules as a
function of the degree of self-assembly and of the tubulin concentration. We also discuss the conditions for
the stability of the steady state.
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[. INTRODUCTION etc., and that hide some of the interesting microscopic details
of the microtubule growth and decay. As analyzed recently
Microtubules, along with actin, flagellin, fibrin, and to- by Flyvbjerg and co-workerf8], the process of microtubule
bacco mosaic virus, are examples of biological systems thagelf-nucleation is quite complex. Restricting attention to situ-
self-assemble reversibfjL]. With the exception of bacteria, ations in which only microtubule growth is possible, they
microtubules are found in all living cells where they form model the nucleation kinetics with a set of coupled nonlinear
part of the cell structural suppofthe “cytoskeleton’) and  equations that are rendered finite by considering the average
the “rail” network for intracellular transport of materials, microtubule size and lumping together all microtubules be-
and they participate in cell reproduction and motion. In theyond a given size.
presence of GTRguanosine triphosphateand Mg" ions, A full description of the growth kineticéi.e., a descrip-
and perhaps aided by microtubule-associated proteins, th®n of the microtubule length distribution as a function of
protein tubulin self-assembles to form microtubules that ardime) requires, in principle, the solution of a doubly infinite
long hollow cylinders having an outer diameter of about 25set of coupled nonlinear first-order differential equations. As
nm and a length that may span the cell. Microtubules may baoted above, the complexities posed by these equations have
grown either from nucleating sites or may be self-nucleateded most theoretical analyses to use either linearized models
(at higher temperatures and/or tubulin concentrajioAs  or nonlinear ones of finite dimensionalif®,10]. Here, we
shown by Fygenson, Braun, and Libchab2}, microtubule  extend Hill's model to describe microtubule growth from
formation from nucleating sites exhibits a steady-state limitnucleating sites. Both the latter extension and the inclusion
for the microtubule length distribution at lower temperaturesof the explicit dependence of rate coefficients on the tubulin
or tubulin concentrations. This steady-state behavior coneoncentration render the doubly infinite set of coupled equa-
trasts with the unbounded growth that occurs at highetions nonlinear. Despite this increased complexity, we re-
temperatures/concentrations and for self-nucleated microtwsolve the major unsolved theoretical problem of determining
bules. the microtubule length distribution under steady-state condi-
The dynamical growth pattern of microtubules has drawrtions as a function of tubulin concentration for microtubule
considerable intere$8—5] since individual microtubules ex- systems that are grown from nucleating sites. The analysis of
hibit separate growth and decay phases with random transihe stability of the steady state can then readily be treated by
tions between these two phases and with a dynamical inst@onsidering the linear equations for small displacement from
bility occurring when the growth becomes unbounded. Hillsteady-state populations.
and co-workerg6] have introduced a minimal “two-state” As recently demonstrated for the reversible self-assembly
model of the growth/decay kinetics of the microtubule masf the protein actin intd=-actin filamentgd 11], experimental
distribution. The model involves a doubly infinite set of lin- measurements for the extent of polymerization under steady-
ear kinetic equations for the microtubule mass distributionstate conditions provide an excellent means to determine the
of the growing and decaying microtubules, a model whose¢hermodynamic parameters, such as reaction free energies,
full analytical solution has recently been given by Rubin andwhich depend on temperaturpH, salt concentration, etc.
co-workers[7]. The rate coefficients in Hill's model, conse- By analogy, similar studies of steady-state microtubule self-
quently, are effective rate constants that depend on the comssembly should provide deeper understanding of the micro-
centrations of GTP, Mg, microtubule-associated proteins, tubule self-assembly mechanism, especially because the
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steady-state behavior of actin and of microtubule self- T +T—T} . ,, polymerization or growth
assemblies can be interpreted using nonlinear algebraic equa- _
tions that are far simpler to apply than the coupled nonlinear with rate constantk,, (1b)

differential equations governing the kinetic behavior. Of par-

ticular importance in the analysis of steady-state data is a Tn—T,, Ccatastrophe, with rate constakt, (1¢)
knowledge of the steady-state properties as a function of the

initial concentration of tubulin monomer®efore the self- T, —T,+T, depolymerization with rate constark,

assembly commencesThe theory, predicting the variation (1d)
of steady-state properties with initial tubulin concentration,

may then be used for determining the rate constants for in- T,—T., rescue with rate constark,, (1e)
dividual steps in the microtubule self-assembly process as a

function of temperature, content of buffer solution, etc. with n=1, 2,...,%, andT, =0. The kinetics of reactions

The focus of this paper lies in solving the equations gov-1a)—(1e) are described by a twofold infinite set of coupled
erning the steady-state limit, so diffusion processes may beonlinear differential equations,
ignored because experimerits2] indicate that the attach-
ment of tubulin dimers to the end of the microtubule is the  d[T] . —_—
rate determining step in the growth of microtubules. Thus, —g7 = _kn[N][T]_kp[T]nZl [T, ]+kdnzl [T, 1,
the doubly infinite set of coupled nonlinear algebraic equa- (2a)
tions suffices for describing the steady-state microtubule
mass distribution. The steady-state equations are solved ana- +
lytically. diTy ]
We extend Hill's minimal model for the kinetics of indi- dt
vidual microtubule formation. The treatment of nucleating (2b)
sites and the explicit inclusion of the tubulin concentration .
implies that the twofold infinite set of coupled equations be- Al Ty ]

oo

=Ka[NI[TI=Kp[ TI Ty 1=k Ty 1+ [Ty ],

=kl T T 1= K[ T T 1=k T 1+ k[T, 1,

come nonlinear, providing the major mathematically compli- dt
cated feature of modeling the microtubule dynamics. Exten-
sions to produce more detailed models are briefly discussed. n>1, (20)
diT,] _ _ N _
II. MINIMAL MODEL FOR MICROTUBULE KINETICS gt~ K Tnl+kd Toeal Tkl Ta 1=k Ty ], n>0,
The minimal model describes the microtubule kinetics in (2d)

terms of the concentratiorsT, ] and [T, ] of n-mers (at here tubul ton i h traint
time t) that are in growing and depolymerization stages, reX'"'¢'€ tUDUlIN MAss conservation Imposes the constrain
[Tlo=[T]+Q.+Q-. ©)

spectively. The individual “monomers” areaf-tubulin
TT]o and[T] are the initial and instantaneous concentrations

dimers. The initial concentration of monomers is denoted as
of tubulin monomers, respectively, and the quanti@eg1)

[T]o, while its instantaneous concentration during the poly

merization reactiongsee below is designated afT]. The
and Q_(1) are weighted sums of the concentratidiis |
and[ T, ] of tubulin monomers in the growing and decaying

initial concentration of nucleating sites [¥N],, while the
concentration of freéi.e., no bound tubulinnucleating sites
is [N]. The growing state microtubule formed by the sequen

tial attachment oh monomers to the nucleating site is des- states,

ignated asT , whose concentration at tirteis denoted as o o

[T,T]. The other essential reactions included in the model are Q.= 2 n[T:], Q = 2 n[T:]. (33)
the “catastrophe” process involving the transition from n=1 n=1

growing T, to decayingT,, , and the reverse “rescue” tran-

sition from T, to T, . We assume that GTP is present in The “catastrophe” ratek is observed to depend on the tu-
excess, so the dependence of the rates on the GTP concdllin concentratiori13], and this dependende,([T]) may
tration need not be followed, nor is it necessary to distin-P€ introduced into the final equation for determinfiig. No
guish between tubulin-GTP and tubulin-GDP concentrationgate equation is necessary for the instantaneous concentration

(GDP is guanosine diphosphate [N] of available nucleating sites because the concentration of
This simple kinetic scheme is represented by the doubl@ccupied nucleating sitefN]Jo—[N], must equal the total
infinite set ofunidirectional reactions, concentration of microtubules chains, independent of size

and whether they are growing or decaying,

T+N—T;, binding of monomer to nucleating site [N]=[NJo=P,+P_, (4)

with rate constantk,, (1a  where the quantitie® , andP_ are given by
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°C - (a—1)P_+bP,=[T{], (78
P.=2 [Ti]l P-=2 [T,]. (4a '
nt nt —dP_+(1-c)P,=[T{]1-d[T;1=f,  (7b
Nonlinearities appear in E¢3) from the explicit dependence
on the monomer concentratigii] and from the nucleation
site “balance equation” in Eq4).
The average microtubule sizes for the growing microtu-

where application of Eq(6d) provides the last equality in
Eq. (7b). The set of equation$7a), (7b), and (6a enable
solving for P, and[T; |,

bules, decaying microtubules, and for all microtubules are P, =k, [N]o(k, +kg)/D (8a)
readily obtained fronP. andQ. , respectively, by o O '
P_=ky[N]o(ke+k,[T])/D, 8b
Q+ Q— Q++Q— n[ ]0( ( p[ ]) ( )
(=t () =2, (M=<""=" (b o
Py P Pi+P_ [Ty 1= B=Kn[N]o(kcka—kiko[ T])/kgD, (80
As noted above, the rate constakfsandk, for catastro- D= (Ke+Kp,) (Kg+Kn) + (Ky— k) (Ko[T]—K,).  (80)
phe and rescue steps, respectively, are understood to be func- P
tions of the concentrationsGDP] and[GTP], as well as of Given the quantities in Eq8), it is possible to solve for

temperature and the concentrations of other components @fe individual[ T, ] and[ T, ] by iteration, but the process is
the buffer solutior(such as ions like Mg, the solutionpH,  greatly facilitated by the use of generating function methods
and microtubule-associated proteiniternatively, the mini-  [14] as follows. Multiply Egs.(6b) and (6¢) by x" and then
mal kinetic model may be extended by including the explicitsumming fromn from 2— o provides a pair of equations for
concentrationdGDP] and[GTP] in Eq. (1), but this exten-  the quantitiesP.. (x)=325 x"[T], (x#1), which are the

sion presents no essential difficulty, again because of thgenerating functions from which the solution to E¢@). are
stoichiometry constraints on the concentrati@OP] and  found by differentiating, as

[GTP] (Ref.[12]). Experiment$2] show that the two ends of

the microtubule grow at different rates, and this feature could [T,]=(ac){™ VI BU,_,(\)
likewise be incorporated with no difficulty into the model by s
introducing a slower ratek(,) for growth at the “minus” +(ac) H(bf—cB)Uno(M)], (93
d.
. [T71=(@0) ™ 2 (f+ Bd)U,_1(N)
lll. STEADY-STATE POPULATIONS +(alc)Y2afu, ,(\)], (9b)

~ The steady-state limit is obtained from the kinetic equayyhereu (\) are Chebyshev polynomials of the second kind,
tions (2) by setting the time derivatives on the left hand side

to zero, i.e., by taking U,(N)=sin (n+1)arccos\ ]/(1—r?)*2 (10)
d[T] d[T.] d[T,] with  the definitions U_;(A\)=0 and A=(a+hbd
at - dt - gt % n=12.... ()  tc)/2(ac)V2 The overall exponential factor in Eq9) is

consistent with the exponential microtubule length distribu-
For notational simplicity, the steady-state values of the contion found in Ref.[2].

centrations are henceforth also denoted®s [T;/], and Since the steady-state concentratiiig ] and[T,] in
[T, ] in the following. The steady-state limits of equations Eqs.(9) are functions ofT], it would appear that the mass
(2) are rewritten in the more compact form, conservation equatio3) could be used to determine the
steady-state value fdfT] by using Eq.(3) in conjunction
Ki{[NJo— P, —P_}=—Kk,[TIP,+k4P_, (68  with equations forQ.. , formed by performing the indicated
summations in Eq(3a) on Egs.(6b) and (6¢), to eliminate
[T 1=a[T,_{]+b[Ti_ i1, n>1, (6b) Q. and leave a nonlinear algebraic equation [fb}. How-
ever, the pair of equations f@.. may be shown to be iden-
[TA]=c[T _,]+d[T,], n>1, (60 tical, leaving one equation short of that necessary for deter-
mining [T]. On the other hand, since the average degree of
[Ty ]=f+d[T{], (6d)  polymerization,(n), is measurable, we may uge) to pro-

vide the remaining equation.

where Eg.(4) has been used and where the reduced Substituting the mass conservation equati@nand the
rate constants are defined as=(k,tky)/kq, b=—k./  solutions forP. from Egs.(8a and(8b) into the definition

Kg, C=Kp[Tl/(ke+kp[T]), d=k./(ke+ky[T]), and of (n) yields a readily solved quadratic equation for the
f=k[TH[N]o—P,.—P_}/(kc.+kg[T]), some of which are  steady state concentrati¢fi] as a function of T],, (n), and

still explicit functions of[T]. the rate constants. K; is taken to depend ofif], then the

Summing Eqgs(6b) and(6c) overn from 2—« and using equation is no longer quadratic and therefore requires nu-

the definitions in Eq(4) provide the respective pair of equa- merical solution. Insertion of this solution fGF] into Eq.(9)
tions, yields the explicit steady-state mass distribution.
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IV. STABILITY CONDITIONS drs, ]

- _ n -
The steady state is stable, provided that small displace- dt Kal 6n 1+ Kal 0y 1]+ Ke[ 6y 1= k[ 6,1, n>0,
ments from steady state die out with time. Experimé@is (129

indicate that this stability exists at a lower temperature/
concentration range, while instability ensues at highefyhere
temperatures/concentrations. The stability limits are readily
studied by expanding the nonlinear kinetic equatidBs

about the steady-state solutions and by retaining only the P=kn[ 6H[NJo= P+ 55~ P sd
linear contributions. * *

The steady state is stable, provided that small displace- k[ Tlsel 2 [671- 2 [6,1}-
n=1 n=1

ments from steady state die out with time or, perhaps, just

oscillate(the “dynamic instability”). Thus, the stability lim-

its are obtained by expanding the nonlinear kinetic equations A growing exponential component to the solution of Eq.

(2) about the steady-state solutions and retaining only th€l12) indicates that the steady-state limit is unstable. While a

linear contributions. Define the deviations from steady statéinear set of first-order differential equations is readily

as, for example, solved, the doubly infinite character of the stability equations
. . N hampers practical computations. However, the infinite set of

[0 1=[Ta 1= [Th lss: (1) relaxation rates is really unnecessary. Instead, for example, a

n ) . “mode” containing predominately the growing species, such
where now[ T, ]; denotes the time-dependent concentratlonasA+:Eﬁzlwm, is expected to be one of the modes indi-

and [T, ]ss designates the time-independent steady-stal@ating the instability. It may be shown that the same final
limit. The linearized kinetic equations then become stability conditions ensue when the set of equations is ex-

d[ 5] o w panded to include modes such@s =37_,n[ ;] involv-
a5t —T —k,[ 6] Z [T ]ss— kp[T]ssZ [60] ing the deviations from steady state of the total mass of mi-
n=1 n=1 crotubules.
o Equations(12¢) and (12d) are summed oven to reduce
- the stability conditions to a set of three equations. W&t
+
kdnzl Lon ] (129 denote the column vector,
d[é;] . VIt)=(A,, A_, [& 13
= =Tkl BIT Tasm Kol Tled 81—kl 81 1+ K,[ 571, ®=(4.. a-. o], 3
(12b and the equations may be represented in matrix form as
d[éy]
G0 =Kol SITo tlsst Kol Tlsd 87 11— ke[ S1 T3 Jss dv(t) .
T:Mv(t)+N[51]’ (14)
—kp[ Tlsd 8y 1=k 83 1+ k[ 8,1, n>1,
(120  where the matrixM and vectorN are given by
|
_[kn{[N]O_P+,ss_ Pf,ss}""kaJr] (kn_kp)[T]ss kd+kn[T]ss 0
M= kn{[N]O_P+,ss_ Pf,ss} _kc_kn[T]ss kr_kn[T]ss y N= 0 (15)
0 K. —k, —kq
|
The solution to Eq(14) may be written as the behavior of the integral term is irrelevant to the stability
. consideration. The only other possibility for instability is if
V(t)=exp Mt)V(0) + f dt’ exgM(t—t")IN[ 81 ]y, [ 61 ] grows exponentially when all eigenvalues are negative,
0

a situation that is physically unreasonable. Thus, the stability
(16)  condition reduces to the determination of whether the matrix

whereV(0) represents an arbitrary displacement from stead)z/I lr\1/|af al E%S't.'ve eb|_ger_1valui. t;hef charafierlstlzc+equatlon
state. If an eigenvalue ofM is positive, the term e{M—x1|=0 is cubic inx of the form, x>+ a,x*+ayx

expM1t)V(0) exhibits an instability of the steady state, so T 20, Where(defining[N]ss=[N]Jo=P+ ss=P- 59,
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ay=Kn[ N]ss+ KpP s + K+ K, + ko[ Tlss, (179 merical analysis is required to map out the phase diagram as
a function of the controllable system parameters, and this is
a3 = (Ko[N]sstKpP ) (Ko Ky + Kol Tlso) + Ko Tlsd Ko+ k), beyond the scope of the present treatment.
(17b) Although steady-state microtubule growth is not observed
experimentally to occur under conditions where the growth
ap=Kn[N]sd K Kn[ T]ss— Kckq) + Py Kikn[ T]sd( ket Kp). is self-nucleating, the dynamical equations should posses a
(179  steady-state solution whose resolution could provide insights
] o o into special conditions, such as those greatly increasing the
The following situations cover all possibilities: catastrophe rate, where steady-state growth could be probed
gnd thereby vyield added understanding of self-nucleated
growth. The treatment of self-nucleated steady-state growth
follows identically as above15] with the replacement
K INJ[T]—=Kk,[T]™, wherem is the number of monomers
required to form the nucleus. The final equation o} is
therefore no longer quadratic.

(@ If all roots are real and negative, the steady state i
stable.

(b) If some roots are positive, there is unbounded growth
and the steady state is unstable. Becasanda, are posi-
tive, at most one root is positivénstability), and this can
arise only ifag is negative, which is highly unlikely.

(c) If two roots are complex conjugates, but the real parts
are negative, the system oscillates about the steady state. If
the real parts are positive, the system enters a domain of This research was supported, in part, by Grant No.
“dynamic instability,” oscillatory, unbounded growth. GM56678 from the National Institutes of General Medical

While the conditions delineating these situations can besciences of the NIH. | am grateful to Jack Douglas, Jacek
represented analytically, the large number of rate coefficientBudowicz, and Leif Matsson for helpful discussions, and to
and the steady-state values involved render unwieldy th&hu Tran for help in catching the redundancy of Qe
analytical analysis of these conditions. Rather, a detailed nuequations.
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